What Is Resonance?

We hear the word used a lot, but what is resonance? First, in order to explain we have to explain the terms we will use.

  • A period is the amount of time it takes to complete one cycle
  • The number of cycles in one second is the frequency of an oscillation.
  • Frequency is measured in Hertz, named after the 19th-century German physicist Heinrich Rudolf Hertz
  • One Hertz is equal to one cycle per second.

(more…)

Continue ReadingWhat Is Resonance?

Evaluating A Closed Loop Control System For High Pressure Pumps

Prosig were recently involved in the validation of a closed loop control system for an automotive pump supplier. The customer has a large number of test cells, each test cell has 8 pumps continually on test. Each pump is instrumented with a revolution or tachometer sensor, giving a once per revolution tachometer pulse. Additionally, there are various analogue transducers on each pump which measure parameters, such as pressure at the pump inlet and outlet.

(more…)

Continue ReadingEvaluating A Closed Loop Control System For High Pressure Pumps

Order Cuts And Overall Level

Order cuts are taken from a set of FFTs, each one at a different rpm. The rms level is then found as the Square root of the Sum of the squares of each of the FFT values. Mathematically, if x_{ks} is the modulus (magnitude) of the k^{th} value of the FFT at speed s for k = 1,\dots,N-1 then the rms value at that speed is given by

rms_s = \sqrt{\sum_{k=0}^{N-1}{x_{ks} ^2}}

This takes into account the entire energy at that speed both the order and the non order components, including any noise.

(more…)

Continue ReadingOrder Cuts And Overall Level

Acceleration, Velocity & Displacement Spectra – Omega Arithmetic

Accelerometers are robust, simple to use and readily available transducers. Measuring velocity and displacement directly is not simple. In a laboratory test rig we could use one of the modern potentiometer or LVDT transducers to measure absolute displacement directly as static reference points are available. But on a moving vehicle this is not possible.

Continue ReadingAcceleration, Velocity & Displacement Spectra – Omega Arithmetic

Examples Of Event Extraction And Removal

Event ExtractionIn many cases only significant events, such as bumps or other transients in a signal are of relevance. The objective is to be able to isolate these events in a meaningful manner so that they may be automatically recognised and either removed or extracted for analysis in a structured way.

There are two principle objectives initially: one is to be able to recognise an event and the other is to be able to mark it in some way so that subsequent software is able to operate on the actual event. We must also note that an event has a start and an end; the criterion we use to recognise the start may not necessarily be the same criterion we use to recognise the end. Searches for the start and end points are carried out on a Reference Signal. How the reference signal is formed is discussed in detail later, it includes the original signal, various running statistical measures such as the dynamic RMS, differentiation for slope detection, integration and so on. In many cases the start criterion will be some check on the level achieved by the reference signal. By the time any check level has been detected then it is almost certain that the event started earlier! That is, a pre trigger capability is essential.

(more…)

Continue ReadingExamples Of Event Extraction And Removal

Updated Protor System For Ringhals, Sweden

  • Post author:
  • Reading time:2 mins read
  • Post comments:0 Comments
  • Post category:news

RinghalsProsig installed a PROTOR system at the Ringhals1 reactor in Sweden in 1992. This system was based on the PROTOR2 level of hardware and software and consisted of a Sun workstation and PC based acquisition system. The system has been successfully monitoring the two main turbine generators ever since. Last month Prosig upgraded this system to their latest PROTOR4 hardware and software.
The system now consists of a high-end rack-mount server PC containing RAID, hot-swap disks, dual high-speed Ethernet LANs and redundant power supplies together with two 32-channel 4700 data acquisition units.
The system is connected into the station alarm system so that control room staff are automatically alerted on vibration alarms. The system is fully integrated within the Ringhals network for data archiving, remote access and data transfer with the plant computer.

(more…)

Continue ReadingUpdated Protor System For Ringhals, Sweden

Measuring For Success With A Hammer Impact Test

The following application note shows the steps taken to perform structural analysis using a hammer impact test on an automotive exhaust pipe structure to improve the structural damping properties of the exhaust pipe mount. This application note follows up to a previous article – “Preventing Component Failure In The Fast Lane”.

A recent signal processing application note described how the Prosig sponsored Dalmeny Racing Formula Ford Team, whilst contesting the UK Formula Ford 1600cc championship, suffered several minor structural failures on a particular part of an exhaust pipe mount. Prosig dispatched a team of engineers, and after a brief survey of the damage, the engineers made an outline assessment. They concluded that “the exhaust itself is resonating at particular engine speeds. This is causing some shear forces in the mount. This in turn is causing stresses in the material leading to cracking and eventually failure.”

(more…)

Continue ReadingMeasuring For Success With A Hammer Impact Test

Fatigue & Durability Testing

The following application note describes the test and measurement process for the fatigue & durability testing and development cycle of an automotive suspension component, specifically a tie rod. The component had been known to fail at various intervals. An estimate of the predicted fatigue life of the component was required in order to assess the feasibility of its continued use and to see if a design change was required. The component under test is shown in Figure 1. The testing was carried out by a major automotive manufacturer. Strain gauges were used to monitor the strain levels.

(more…)

Continue ReadingFatigue & Durability Testing

Measuring Exhaust Noise Using A P8000 System

The following note describes measuring exhaust noise using a Prosig P8000/DATS system for the refinement of an automotive muffler design for a major after-market exhaust manufacturer in Europe. The particular vehicle under test was required by local legislation to have an overall radiated noise level of less than 70 dB. When tested, the vehicle was found to be producing 71.8 dB of radiated noise. The design of the exhaust system clearly needed to be reviewed and modified. (more…)

Continue ReadingMeasuring Exhaust Noise Using A P8000 System

Standard Octave Bands

The “standard” centre frequencies for 1/3 octave bands are based upon the Preferred Numbers. These date from the 19th century when Col. Charles Renard (1849–1905) was given the job of improving captive balloons used by the military to observe enemy positions. This work resulted in what are now known as Renard numbers. Preferred Numbers were standardised in 1965 in British Standard BS2045:1965 Preferred Numbers and in ISO and ANSI versions in 1973. Preferred numbers are not specific to third octave bands. They have been used in wide range of applications including capacitors & resistors, construction industry and retail packaging.

(more…)

Continue ReadingStandard Octave Bands

Torsional Vibration, Tacho Pulses And Aliasing

With shafts, gears and the like, the general method of determining the rotational speed is to use some form of tachometer or shaft encoder. These give out a pulse at regular angular intervals. It we have N pulses per rev then obviously we have a pulse every (360/N) degrees. Determining the speed is nominally very simple: just measure the time between successive pulses. If this period is Tk seconds and the angle travelled is (360/ N) degrees then the rotational speed is simply estimated by 360/(N*Tk) degrees/second or 60/(N*Tk) rpm.

(more…)

Continue ReadingTorsional Vibration, Tacho Pulses And Aliasing

Analyzing Shaft Twist And Repairing Damaged Tachos

This post discusses analyzing shaft twist and at the same time handling the less than perfect data that we have all come across.

A shaft has been instrumented with two shaft encoders, one at each end. Each shaft encoder gives out a once/rev pulse and a 720 pulses/rev signal. Each signal was digitised at 500,000 samples/second. The objective is to measure the twist in the shaft and analyze into orders. The test stand was already equipped with a data acquisition system so a Prosig acquisition system was not required. Instead it was decided that the data captured by the resident system would be imported into the DATS software. The only format available from the customer system was ‘comma separated variables’ or CSV. This is not ideal as it is an ASCII based format and therefore creates very large files.

(more…)

Continue ReadingAnalyzing Shaft Twist And Repairing Damaged Tachos

A Simple Automotive Noise Test

In a recent article we described how the Prosig P8000 hardware and DATS software had been used to help Dalmeny Racing diagnose a problem with an exhaust bracket on their Formula Ford racing car. Whilst the car was instrumented for structural tests on the exhaust the opportunity was taken to carry out a simple automotive noise test. It was felt that these would provide some useful “real world” data as well as maybe providing some extra information regarding the exhaust bracket failure. After analysing and animating the hammer data it became clear that the engine runup data wouldn’t be needed. However, it was decided that some analysis should be carried out to see if the noise and vibration data backed up the conclusions of the other tests.

(more…)

Continue ReadingA Simple Automotive Noise Test

Phase Angle Between Signals

The following article was written in response to a question from a visitor to the website. The gentleman in question had been reading some of the Prosig signal processing articles and had the following question.

Dear Sir,

It was interesting reading the articles in your mail.I would like
to know the options available in hardware and/or software for measurement/calculation
of phase angle of first harmonic of a vibration signal which is
sinosoidal. The phase angle is the relative phase angle difference
between the signal and the tacho - one into rpm signal.

Regards.
etc.

(more…)

Continue ReadingPhase Angle Between Signals

Audio Equalisation Filter & Parametric Filtering

When working with audio signals a common requirement is to be able to equalise, cut or boost various frequency bands. A large number of hardware devices on the market provide this capability. The key aspect is that such filters are able to control bandwidth, centre frequency and gain separately. There are broadly two classes of filter used, a “shelving” filter and an “equalising “filter (also known as a “peak” filter). A shelving filter is akin to low pass and high pass filters. An equalising filter is like a bandpass or band reject filter.

(more…)

Continue ReadingAudio Equalisation Filter & Parametric Filtering

Cleaning Up Data

When we have a very noisy signal with a large number of spikes and signal bursts then if all else fails try Median Filtering. This is a technique often used in cleaning up pictures. The operation is almost childishly simple in concept but we will save the details until we have examined an example.

(more…)

Continue ReadingCleaning Up Data

What Is A Fourier Transform?

A Fourier Transform takes a signal and represents it either as a series of cosines (real part) and sines (imaginary part) or as a cosine with phase (modulus and phase form). As an illustration, we will look at Fourier analysing the sum of the two sine waves shown below. The resultant summed signal is shown in the third graph.

(more…)

Continue ReadingWhat Is A Fourier Transform?

PROTOR Redhat: Installation and setup of Apache web server

Installation

In order to run the Apache web server on a system you will firstly need to install the suitable RPM using a command of the form:

rpm --install --nodeps --replacefiles --replacepkgs  apache-1.3.23-11.i386.rpm

(more…)

Continue ReadingPROTOR Redhat: Installation and setup of Apache web server

PROTOR Redhat Note: Setup of ATI Rage 128 Graphics Card

There appeared to be problems when using the ATI Rage 128 graphics card in a Redhet 7.3 system. The problem manifested itself as screen corruption when exitting the Window Manager. This happened if using FVWM or KDE Window Managers. The corruption appeared to get progressively worse with each log off.

(more…)

Continue ReadingPROTOR Redhat Note: Setup of ATI Rage 128 Graphics Card