Shaft Displacement Measurement Using A PROTOR System

Shaft displacement is an important vibration measurement for rotating machines. Shaft displacement is usually monitored by non-contact shaft displacement probes such as eddy-current probes. These probes produce a voltage proportional to the distance of the shaft surface relative to the tip of the probe. For maximum benefit, ideally two shaft displacement probes will be fitted to measure the displacement in both the horizontal and vertical directions. Actually the probes do not have to be exactly horizontal and vertical as Prosig’s PROTOR system is able to resolve into the horizontal and vertical directions.


Continue ReadingShaft Displacement Measurement Using A PROTOR System

Sound Steering

The requirement was to develop a ‘standard’ test for assessing power steering pump noise (and sound quality) in vehicles. Measurements needed to be objective so that the method would be suitable for evaluating dissimilar vehicles and different types of pump.

Noise is an important consideration when a consumer is selecting a new vehicle. It is therefore imperative that every aspect of the vehicle’s acoustic profile is thoroughly understood and refined.

From an end user point of view the assessment criterion is simply how much will the driver or passengers hear the pump noise in relation to the vehicle background noise. That is, will the pump produce, what may be called, audible tones with the vehicle in different operating conditions.


Continue ReadingSound Steering

Measuring Torsional Crank Shaft Jitter

Using Prosig’s P8000 series data acquisition system with DATS signal analysis software, torsional analysis (crank shaft jitter) was performed on an automotive engine attached to an engine dynamometer. The significance of this is that only one tachometer channel was required to identify crank jitter.


Continue ReadingMeasuring Torsional Crank Shaft Jitter

Dynamic Range And Overall Level : What Are They ?

Accurate measurement of a signal depends on the dynamic range and the overall level of the data acquisition system. The overall level setting may be thought of as determining the largest signal that can be measured. This clearly depends on the present gain setting. That is the overall level is related to the gain. Clearly if the overall level is too small (gain too high) then the signal will be clipped and we will have poor quality data. The dynamic range then tells us that for the given overall level what is the smallest signal we can measure accurately whilst simultaneously measuring the large signal.

In a very simple sense suppose we have an artificial signal which consists of a sinewave at a large amplitude A for the first half and that this is followed by a sinewave with a small amplitude a for the second half. We will set the gain (the overall level) to allow the best measurement of the A sinewave. The dynamic range tells us how small a may be so we can also measure that without changing settings.

Continue ReadingDynamic Range And Overall Level : What Are They ?